可测性设计(DFT)基本知识及流程介绍

主讲人: Kevin He

Oct, 2016

Agenda

1	Manufacturing Defect
2	Manufacturing Testing
3	What is DFT and Why DFT
4	Describe Different DFT Techniques
5	DFT Flow Introduce

What Is a Manufacturing Defect?

Physical Defect:

A on-chip **flaw** introduced during fabrication or packaging of an individual ASIC that makes the device **malfunction**.

Physical Defects in CMOS

Manufacturing Test

There is no perfect IC fabrication process!
 Physical defects may exist within the manufactured chip.

 A defect may cause a logical fault, or changes the parametric properties of the IC and/or negatively affects the product's reliability.

Manufacturing Test(cont)

Manufacturing Test(cont)

Test Automation

Test Automation

- Automated Test Equipment is essential part of manufacturing
- Highly automated throughput-oriented equipment
- Investment > 1M\$ per system
- Multiple systems at each manufacturing site

ATE Example: Agilent 93000

ATE Example: Agilent 93000 (cont)

- Workstation
 - Test software, interface and control of mainframe
 - Test engineer computer
- Mainframe
 - Test computer
 - Power sources
 - Measurement instruments

- Testhead
 - Device Interface Board (DIB) to DUT
 - Sensible measurement equipment kept close to DUT

Probers

- Robotic machine that manipulates the wafers
- Connects individual chip to probe card needles
- ATE is connected for measurement

Probecard

Manufacturing Test(cont)

- A speck of dust on a wafer is sufficient to kill chip
- Manufacturing testers are very expensive
 - Think about it at beginning phase, careful plan about chip performance requirment, ATE, Load Board..
 - DFT designer pay attention to it during dft implement, such as chain length, memory instance number per test step
 - ATPG efficiency
 - selection of test vectors

Agenda

1	Manufacturing Defect
2	Manufacturing Testing
3	What is DFT and Why DFT
4	Describe Different DFT Techniques
5	DFT Flow Introduce

Test Definition

Test

 checking a manufactured object for matching with a set of specified properties.

Test Spec

 A set of product features and related check rules required to guarantee product quality and product reliability.

Testability

the effort for test development and test application.

Rules for Detecting Faults

Rules of the Game:

Tester access to the DUT is **only** allowed through its **primary** I/O ports because Internal Probing of IC Too Costly!

Way of Chips to be Tested

- The internals of the integrated circuit is not accessible.
 - test vectors are applied to the inputs
 - Outputs are compared to expected values
 - Process is automatized using an ATE

Design For Test

- DFT refers to those design techniques that
 - Make test generation and test application cost-effective
 - Make extra design effort in making an IC testable
 - Involve inserting or modifying logic, and adding pins
 - Help design the chip to increase observability and controllability
- If each register could be observed and controlled, test problem reduces to testing combinational logic between registers
- Logic blocks could enter test mode where they generate test patterns and report the results automatically.

What is Design-for-Testability?

- Design for Testability (DFT):
- Extra design effort invested in making an IC testable
- Involves inserting or modifying logic, and adding pins

Observability and Controllability

- Observability: ease of observing a node by watching external output pins of the chip
- Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip
- Combinational logic is usually easy to observe and control

Roles of Testing

- Detection: determination whether or not the (DUT) has faults
 - Identification of process flow
 - Detection of chips that must not be sold to customers
- Diagnosis: location and identification of a specific fault
- Device characterization
- Failure mode analysis (FMA): determination of manufacturing process issues that may have caused defects on the DUT
 - manufacturing process improve and the yield improve

Real Tests

- Based on analyzable fault models which may not perfectly match real defects
- Incomplete test coverage due to the extreme complexity of IC
 - Mixed-mode analog and digital
 - Several cores, memory
 - Hundreds of millions of transistors
- Some good chips are rejected (yield loss).
- Some bad chips pass tests (defect level).

What we test by DFT

众所周知,芯片主要由三大部分构成。→ 芯片示例-可见下图→

1 与电路板和其他芯片的接口-IO pad↓

2 存放程序的空间-ram 和 rom→

3 搭建逻辑电路的基本组件 —标准逻辑单元↓

ų,

我们 DFT 工程师所有的工作的目的只有一个-设计和插入数字电路,测试整个芯片的制造质量,筛选出没有制造缺陷的芯片。↩

Defect Level vs Fault Coverage

DFT Cost

- DFT cost
 - Area cost;
 - Performance penalty;
- ATPG tool cost and pattern debug cost
- ATE testing cost

DFT Cost (cont)

- Test cost reduce
 - Proper test plan, such as chain length, memory concurrent testing...;
 - Reduce pattern number;
 - Increace test frequency;

Agenda

1	Manufacturing Defect
2	Manufacturing Testing
3	What is DFT and Why DFT
4	Describe Different DFT Techniques
5	DFT Flow Introduce

DFT Methods

No single methodology solves all testing problems.

 No single DFT technique is effective for all kinds of circuits.

DFT Methods(cont)

- Ad-hoc
- Structured
 - Scan
 - Built-in self-test (BIST)
 - Boundary scan

Scan

 To provide controllability and observability of internal state variables for testing

 To turn the sequential test problem into a combinational one

Scan(cont)

Advantages/Disadvanges

- Advantages
 - Design automation, Automated DFT hardware insertion Combinational ATPG
 - High fault coverage
 - Reasonable area (~15%) and speed (~5%) overhead
- Disadvantages
 - Large test data volume and long test time
 - A slow speed test

Typical Memory BIST Architecture

MBIST Without Diagnosis

BIST controller creates and applies patterns itecture

Multiplexers select b/w system and test data

BIST with Diagnostic Block

Boundary Scan

Motivation and benefits:

- 1.Detect board manufacturing process faults, including wrong/missing components, pin stuck/short/open, assist interconnection test on the board-level
- 2. A many degrees of freedom are allowed

Specification

- Independent sub-system (independent clocks)
- Pins: TDI, TDO, TMS, TCK are mandatory
- Reset: optional TRST* pin or power-on reset circuitry
- Registers:
 - Instruction, bypass, boundary-scan (mandatory)
 - Device identification, design-specific data (optional)
- BSDL (boundary-scan description language)

Board Test Example

JTAG Architecture

Instructions (1)

- BYPASS (mandatory)
 - Provides a minimum length serial shift register from TDI to TDO
- SAMPLE/PRELOAD (mandatory)
 - Allows a snapshot of all I/O lines
 - For loading the BSR serially
- EXTEST (mandatory)
 - Data shifted into the BSR will be available at the chip outputs
- INTEST
 - Data shifted into the BSR is driven on the core logic inputs

Instructions (2)

- IDCODE (mandatory, if ID register available)
 - ID register selected for reading HW identification
- CLAMP
 - Holds the chip outputs at values shifted in before, while bypass register is active
- HIGHZ
 - All chip outputs are placed in high impedance state
- User-defined test mode
 - May be private or public

User-Defined Instru/Data Register

TAP-Controller accesses external register

Agenda

1	Manufacturing Defect	
2	Manufacturing Testing	
3	What is DFT and Why DFT	
4	Describe Different DFT Techniques	
5	DFT Flow Introduce	

Test Development Flow

- Scan Synthesis
- Macro Isolation
- Boundary Scan Synthesis
- BIST Synthesis

- Scan Ordering
- AutomaticTest PatternGeneration
- IDDQ Selection

- Pattern Assembly
- Test Simulation
- Test ProgramGeneration

Product Block Level Chip Level Test Tape Test
Architecture Design Design Pattern Out Program

- Test Concept Engineering
- Test Specification
- Fault Simulation
- Adhoc DFT
- Extraction of Func. Pattern

- Analog Test Sets
- Parametric Tests

DFT engineer 5 tasks

DFT Flow (top)

1.2. InfoTM DFT Flow

DFT flow inputs/outputs

Г	Test Development Flow			
L	Phase	DFT Team Task	Need inputs	Send outputs
1	Product Architecture	Test concept defined – test scheduling and test mode control	Chip test requirements/concepts	Test Specification
2	Block Level Design	DFT design -insert scan/edt_ip/MBIST/HardMacro DFT DFT verification - RTL/Gatelevel sim (block_level) Block level RTL/netlist/sdc/lib Block level RTL/netlist/sdc/lib		Block level RTL/netlist/sdc (add DFT)
3	Chip Level Design	DFT design -TCU/TAP/adhoc-DFT/BSCAN/Toplevel connections DFT verification - RTL/Gatelevel sim (chip_level)	Top level RTL/netlist/sdc/lib	Top level netlist/sdc (add DFT)
4	Test Pattern Generate	DFT Patterns - Development (Func pat/ATPG/IDDQ/Analog Test Sets/Parametric Tests) Top level PR netlist/sdc/lib Test patterns (meet with coverage requirment)		Test patterns (meet with coverage requirments)
5	Tape Out	DFT Patterns - Delivery (Func pat/ATPG/IDDQ/Analog Test ets/Parametric Tests) DFT verification - Patterns gatelevel sim (chip_level max/min)	Top level PR netlist/sdc/lib/SDF	1 Simulation max/min clean 2 Final test patterns (wgl/evcd files) 3 Final Test Specification and Patterns Guideline
6	Test Program	Support Test engineers and Failure analysis	Tester logs	Test reports/Debug reports/Test seq

DFT flow used tools

DFT Tools					
Phase		Need Tools			
1	Insert scan chains	Design Compiler/Tessent			
2	Insert edt/compress ip	Tessent - TestKompress/TMAX			
3	Insert MBIST	Tessent MBIST/MBIST Architect			
4	Insert BSCAN	Tessent BSCAN / BSCAN Architect			
5	Test Pattern Generate	Tessent - TestKompress/TMAX			
6	Test scan Diagnose	Tessent - Diagnosis			
7	Simulation	VCS			

Backup

Fault Modeling

Physical fault

Logic fault

IO leakage or short between net open material pollution electronic migration metal stress

• • •

• • •

signal hard fault delay fault static current fault

• • •

...

Fault Modeling

Fault model:

A logical model representing the effects of a physical defect

Fault Modeling(cont)

- Stuck-at fault model
- Delay fault model
 - Transition
 - path delay
- IDDQ

SA fault modeling

Transition fault modeling

- Focus on speed/timing
 - STR, (slow-to-rise)
 - STF, (slow-to-fall)

Path delay fault modeling

 Path delay faults do not have localized fault sites, rather, they are associated with testing the combined delay through all gates of specific paths.

IDDQ

- IDDQ: total current consumption when CMOS circuit in static state
- Just leakage current or diode reverse current,
- Any bridge, open, short or lead to IDDQ variation

