

Breaking the limit of high speed signal

Twinsolution Engineering

2015.07.14

Think big, start small

- 更高的信号速率引起显著的信号完整性(SI) 和电源完整性(PI)的问题:
 - 需要考虑板级,连接器,电缆等互连的高频效应
 - 需要更高质量的探头和测试夹具
 - 需要尽量降低抖动
- •标准规范以每2-3年的速度快速演进:
 - 以现有的设计进展将更困难
 - 更紧的裕度对测量提出更大的挑战
- FPGAs更加广泛的应用:
 - 简单的采用参考设计不再可行
 - 对于整体性能的模拟变得更困难
 - 需要对1/0 进行定性分析

高速互连面临挑战

背板

PCB

电缆

The Importance of Test Contactors for High-Speed Digital Device Testing

- 1. Memory interfaces are also increasing; LPDDR3 architectures are currently running at 800MHz, and the bandwidth is 12.8GBps. LPDDR4 is running at 1.6GHz, and the bandwidth is 24.8GBps.
- 2. SerDes Port : 30GHz

What Makes High-Sped Digital a Challenge?

To convert this rise and fall time into its -3dB equivalent bandwidth use the well known formula **<u>BW= 0.34/rise time</u>**.

高速系统的典型信号完整性问题

Controlled Impedance

Ultra Low Inductance

四种主要的信号完整性问题及成因

- 单一网络的信号品质: 在信号路径和回流路径上存在阻抗不连续导致信号的反射和失真 问题
- 在信号网络之间存在的串绕问题: 互感和互容的存在
- 在电源分布系统中的轨道塌陷噪声(地弹):
 芯片等I/O开关切引起的暂态电流在电源/地网络平面导致电压跌
 落
- 4. 抖动的问题:

以上的问题可能引起抖动; 时钟分布,数据相关的因素,以及EMI也可能引起抖动的问题

Return Loss

P-24014RN-172B

172 Pin

475 Pin

Octopus – Grounding Redistribution

Center Grounding Redistribution Copper Block

- Pitch 800um
- Pin Length: 2.85mm
- Device: 6GHz
- Status:
 - ✓ Customer Mass Production
- RF Performance:
 - Insertion Loss< -0.1dB @ 2.4GHz
 - Return Loss < -25dB @ 2.4GHz
 - Power Loss: -0.8dBm (Improved around 1.5dBm)

Mutual Inductance

Definition of Inductance

Inductance L is magnetic flux through a loop area divided by the current

Self and Mutual Inductance

- Self loop inductance generates a voltage V1 in the driven loop
- Mutual loop inductance generates a voltage V2 in the adjacent loop
 - Note current in adjacent loop is 0

Partial Inductance

- Partial Inductances are the Self and Mutual Inductances of the loop segments
- Mathematical construct They have NO MEANING independent of other partial inductances that form a loop

3D Field Solver Partial Inductances

- 3 Traces in Free Space (no reference plane in structure)
 - Typical for 2 layer packages
- L1, L2, L3 Partial Self
 Inductances are determined mostly by length, smaller
 effects from width and height
- M12, M23, M13 Partial Mutual Inductances mainly a function of spacing and length

3D Field Solver Inductance Matrix

- ONLY LOOP INDUCTANCE HAS MEANING
- To define loops, the current paths must be defined
- Example: Trace2 is a return path
 - Trace1 to Trace2 loop = 5.16+5.16-2*3.78 = 2.76
 - Trace3 to Trace2 loop = 5.16+5.16-2*0.464 = 9.39

Why Partial Inductances are Misleading

- Actual test case comparing various extraction tools
- Question? Which tool gives the correct partial inductances? Is conductor 1's self partial inductance 4.5 or 10.1?
- Answer? They are all correct! Partial inductance is only meaningful with respect to other partial and mutual inductances within a loop. Partial inductances can't be compared between tools or even different simulations on the same tool. Only loop inductances can be compared. In this case they are all within about 15%.

	Α	В	С	D
Self Partial 1	5.280	4.533	10.072	10.100
Self Partial 2	5.856	5.375	9.022	9.261
Mutual 1-2	2.929	2.681	7.244	6.900
Loop 1-2	5.278	4.546	4.606	5.561

Dotum Doth	1	2		width of reference	250 µm
Retuin Faul		Z		width of gap	25 µm
				thickness of trace/ref.	10 µm
				height of substrate	60 µm
				dielectric constant	4.5
			-	length of trace	10 mm

width of center trace 50 µm

Signal Loop Inductance Model

These 2 circuits are equivalent

Simulation with 2 Inductors

AptACDC = 0.826ns .82er = 0ps MinStewFilse = 3.107/ns MacStewFilse = 3.107/ns .MinStewFill = 3.107/ns .MacStewFill = 3.107/ns

1.20

0.92

0.73

0.00

0.41

0.38

0.00

AphACOC = 0.804ms Jitter = 33ps MinSlev/Rise = 5.18/Vhs MaiGlevRise = 3.48V/hts MinBlevFall = 3.16V/hts MaiGlevFall = 3.48V/hts

SI- Cross Talk

v(net_9)

-25.00 -

0.25

0.50

0.75

1.00 Time [ns] 1.50

1.25

1.75

2.00

Result

Eye Diagram

Original Design:

- 0.2mm Pin Design
- Block Clearance: 0.3mm

<u>New Design:</u>

- 0.26mm Pin Design
- Block Clearance: 0.36mm

Double side GND wrap.

Isolation Data (Measurement Vs Simulation)

0.2mm Pin Design

0.26mm Pin Design

Difference Average: 2.4dB

Difference Average: 0.33dB

1. 0.2mm Pin design has a larger difference compare with 0.26mm pin design, might because of insufficient GND of the outside block.

2 Design Isolation Comparison

1. 0.2mm Pin design has better absolute value compare with 0.26mm pin design.

Skyeye- Fine Pitch

Comparison With Traditional Socket

Tesla- High Speed Digital

Full 50ohm Impedance Control **Coaxial Socket**

• Device: 60Gbps / 40GHz

- DLC Coated Probe
- Teflon Ring- Provide Insulation
- Insulation Conductive Material Signal Pin – Controlled 500hm
 - Power Pin- Insulation Coating, As close as possible to center grounding block, to provide less inductance

Zigma1 – S Contactor for QFN

Zigma1 – S Contactor for QFN

ZIGMA Grounding Block Solutions								
Ground Block	Ground Block with Pin	Spike Ground Block	Spike Ground Block with Pin					
	Proven and a second sec							
For Package: ≥ 2x2	For Package: $\geq 3x3$ (With HCl) $\geq 4x4$ (With ZSP) $\geq 5x5$ (With ZP)	For Package: ≥ 2x2	For Package: $\geq 3x3$ (With HCI) $\geq 4x4$ (With ZSP) $\geq 5x5$ (With ZP)					

Zigma1 – S Contactor for QFN

S₂₁ Insertion Loss

S₁₁ Return Loss

Pin 1

Pin 2

Pin 3

Pin 4 Pin 5

Pin 6

Pin 7

Pin 8

Pin 9

Blade- Elastomer Contactor Socket

Socket Example

Before Contact

After Contact

Power Integrity

Ultra-Miniaturized Mobile Computing Platform

SSN in High-Speed / High-I/O Packages and High-Speed Boards

Jitter caused by SSN for I/O

SSN affects Jitter

PDN Impedance affects jitter in high speed signaling

Chip – Package Co-design of Power Distribution necessary for high performance systems

Power Distribution

Figure 8.66 Comparison of the effect of different test fixture PDN designs on the data eye from a DQ pin of a DDR3 memory running at 1.6 Gbps.

Are you OK with your SHMOO?

Power Impedance Measurement

STEP3: Measure S₂₁ to get Z₁₂

Power Impedance Measurement

$$Z_{11} = \frac{Z_{\text{VNA}}}{2} \frac{S_{21}^{(1)}}{1 - S_{21}^{(1)}}$$

$$Z_{22} = \frac{Z_{\text{VNA}}}{2} \frac{S_{21}^{(2)}}{1 - S_{21}^{(2)}}$$

$$Z_{12} = Z_{21} = \frac{Z_{\text{VNA}}}{2} S_{21}^{(3)} \frac{1 + \frac{Z_{11}}{Z_{\text{VNA}}} + \frac{Z_{22}}{Z_{\text{VNA}}} + \frac{Z_{11}}{Z_{\text{VNA}}} \frac{Z_{22}}{Z_{\text{VNA}}}}{1 + S_{21}^{(3)} \frac{Z_{11}}{2Z_{\text{VNA}}}}$$

TwinSolution

(H.1)

Power Impedance Measurement

(c) Using a probe together with an interposer to measure the test fixture performance including the DUT socket.

network measurement setups (left: Z_{12}).

ADC Load Board

ADC Load Board- Correction

Z = R + jX

 R_m
 Conductor resistance

 R_c
 Constriction resistance

 a
 Diameter of a-spot

Apparent (nominal) contact area

Real contact area

Load-bearing area

Quasi-metallic contact area

Conducting contact area (a-spots)

$F_{\rm c} = \xi H A_{\rm a}$

Contact Point Temperature Difference

$$- d\theta = (I^2 R) \cdot dR_1 = I^2 R \cdot \frac{1}{\rho \lambda} \cdot dR$$
$$\int_{\theta_c}^{\theta_b} - d\theta = \frac{I^2}{\rho \lambda} \int_{0}^{\frac{R_c}{2}} R dR$$

$$I^2 R^2 = I^{12}$$

$$\tau_{\rm c} = \theta_{\rm c} - \theta_{\rm b} = \frac{\Gamma R_{\rm c}^2}{8\lambda\rho} = \frac{U_{\rm c}^2}{8\lambda\rho}$$

$$\tau_c = \frac{I^2 R_c^2}{8LT} = \frac{U_c^2}{8LT}$$

Spring Pin Contact Resistance

Firefly– WLCSP Probe Head

- Pitch 400um
- Pin Length: 2.4mm
- Device: 3GHz
- Sites: 8
- Pin count: 960
- Optimize to minimum deflection of PCB board.
- Status:
 - ✓ Customer Mass Production

FireFly: Case Study

Probe Head Electrical Performance Benchmark

BT_TxDEVM_RMS_8DPSK_39 High Power Mode Supplier I Supplier W Twin -250Pin

BT_TxDEVM_PK_8DPSK_39

Lower Power Mode

FireFly : Case Study

Mechanical Performance - DC Continuity Test

- The minimum contact resistance variation from site0 to site7 is pin XTALO, and the contact resistance variation is 9.8mohm. This can consider the pure spring probe's contact resistance variation.
- The maximum variations happens to pin WL_BB_QP_SRC, it is around 240mohm, which should be also related to the device itself.
 TwinSolution

