

高速数字信号眼图 测试优化

Peter Shen: 17701856999

qing.shen@wisestest.com

上海巍测电子科技有限公司

Contents

- High Speed digital concept
- High Speed digital common test items
- Jitter and Eye tests
- Eye test with equivalent sampling

High speed digital test challenge • Digital signal is a

- Digital signal is a combination of 0,1;
- Compared with analog/RF signal, it actually required higher bandwidth;
- The higher data rate require higher bandwidth of tester hardware;

Harmonic Number, n

Industry's High Speed Interfaces**

- DDR (4/5)
- USB 3.x
- DVI/HDMI (2.x)
- S-ATA (3.x)
- PCI-Express(3/4)
- DisplayPort
- MIPI
- RDRAM
- IEE1394
- HyperTransport I
- Rapid IO (RIO)
- XDR (Yellowstone)
- Flex-IO (Redwood)
- XAUI
- FB-DIMM/AMB

Rambus.

EXPRESS

Typical speed

	application	Туре	datarate_per_lane
		HDMI2.0	6Gbps
HDMI	Multi-media, video+audio	HDMI1.4	3.4Gbps
			5Gbps;
		USB3.0	
USB	mass strorage;	USB2.0	480Mbps
	Mass strorage;	SATA3.0	6Gbps
SATA	Interconnection for PC	SATA2.0	3Gbps
	PC extension;	PCIe 3.0	8Gbps
PCIE	workstation;	PCIe 2.0	5Gbps
		DDR4-3200	3.2Gbps per pin
DDR	Memory	DDR4-2400	2.4Gbps per pin

High Speed common test items

- Receiver
 - at speed functional
 - impedance
 - sensitivity
 - jitter tolerance
 - rx skew
 - setup/hold time
 - ...

High Speed common test items

- Transmitter
 - at speed functional
 - impedance
 - skew
 - pll freq
 - jitter
 - BERT
 - histogram
 - swing
 - rise/fall time
 - eye test/fast eye mask
 - •
- Loopback

Jitter and Eye tests

Definition of Jitter

 Jitter – Unwanted variations on a signal such as the interval between successive pulses, the amplitude of successive cycles, or the frequency/phase of successive cycles.

Jitter Histogram

 Histogram is a statistic method to illustrate distribution of targeted parameter. Height of each bar is proportional to possibility value h this bin.

Fig. 9: Histograms of random Jitter, deterministic jitter, combined DJ & RJ jitter

Definition of an "Eye Diagram"".

- Definition: Superposition of many data waveforms acquired from some test instrument (sampling oscilloscope or 93k) based on a constant trigger
- Eye Diagrams are commonly used to characterize high speed interfaces

How is an Eye Diagram Derived?

Example: Clock signal from the device

What information in Eye Diagram?*

- ≻ Eye Width
- > Jitter
- > Rise and Fall Times
- > Signal Levels
- > Overshoot and Undershoot
- > Ripple

Eye test: shmoo

- Functional pattern based eye test: strobe each bit;
- X: search strobe edge;
- Y; search threshold voltage;
- Each X&Y combination, run pattern. Get pass/fail, draw shmoo.

因为专-

COM 所以专业

Eye test with equivalent sampling

- Improved eye measurement solution

Motivation

• Traditional eye diagram measurement only show passing area, information in "failed" region is missing.

Eye Test with walking strobes on Making Strobes of Make Solution

Eye Test Solution

Eye Test Solution Results

160 mV	***************************************
155 mV	***************************************
150 mV	***************************************
145 mV	***************************************
140 mV	***************************************
135 mV	***************************************
130 mV	**_************************************
125 mV	***************************************
120 mV	***************************************
115 mV	***************************************
110 mV	***************************************
105 mV	***************************************
100 m37	
95 107	
90 m37	· · · · · · · · · · · · · · · · · · ·
35 mil	
00 m0	*** ***** *****************************
25 - 52	
73 10	
70 m0	
DS MU	
50 m0	
55 m//	***************************************
50 m//	***************************************
45 mV	***************************************
40 mV	***************************************
35 mV	***************************************
30 ოწ	**_************************************
25 ກາປີ	***************************************
20 mV	***************************************
15 mV	*****
10 mV	*****
5 ოზ	******
0 ო წ	*********
-5 mV	***************************************
-10 mV	***************************************
-15 mV	******
-20 mV	***************************************
-25 mV	**************************************
-30 mV	***************************************
-35 mV	***************************************
-40 mV	***************************************
-45 mV	***************************************
-50 mV	***************************************
-55 mil	
-60 mil	***************************************
-65 mil	***************************************
-70 mil	
-75 -57	** ************************************
-80 -57	
-85 -87	** ************************************
-90 -52	
-95 -57	
-100 -57	** ************************************
-105 -63	
-103 m0	
-776 -42	
-TT2 MO	**************************************
-TSO WA	
-125 mV	***************************************
-тзо м <u>р</u>	***************************************
-T32 mA	***************************************
-140 mV	***************************************
-145 mV	***************************************
-150 mV	- *************************************
-155 mV	***************************************

Ⅰ○ 测试网

TEST

COM 所以专业

Usage in Production test

• How to use in production test?

- Reduce level search steps, saying 3 level: 20%, 50%, 80%; calculate rise time, fall time, jitter;

- Use hidden upload feature;

Histogram

• Can we get histogram?

Undersampling and shuffle

- Walking strobe is a extreme example of undersampling.
- Consider replace below sine wave with PRBS str

• If tester has higher sampling rate, we can increase sample rate, to reduce pattern time.

Timing design example I

Test condition
SATA II Data rate=3.0Gbps
UI=1000/3.0=333.333ps
PRBS7 input data stream (127bits)
Resolution=1UI/200=1.667ps

=>

Method1: walking strobe sample period=UI*127bits+resolution=42.335 ns Sample rate = 23.621Msps Sample number=127*200=25400;

Timing design example II

Test condition
DDR5 Data rate=4.0Gbps
UI=1000/4G =250ps
Compared pattern (1000 UI)

Resolution=UI/250=1ps

=>

Method: coherent sampling and shuffle
Sample number N=1000*250=250000;
Coherent: M/N=ft/fs; fs=ft*N/M=4MHz*250000/M
M=250001, ft= 3.9999840MHz, period=250.001 ns
M=251, ft= 3984.0637450MHz, period=251 ps (PS9G support)

Summary

- Advantages:
- Get more information out of pass area;
- No need to use high sampling rate, only assure channel bandwidth is enough;
- No need to do payload search, to find exact start point;
- Data process is simplified by using "diff", no need to compare bit by bit.
- Disadvantages:
- Pattern is repeatable;
- Tester supports multi clock domain;

•公司简介:

巍测科技专注于芯片测试方案开发,利用丰富的业界经验,为客户提供优质的测试服务;创始人团队都有超过10年的从业经验,对高速数字信号测试和RF SOC测试有丰富经验,熟悉A93K等高端测试机台;

欢迎资深测试工程师加入我们,做业界领先的 技术,帮助中国半导体成长!

• 公司网站

www.wisestest.com

